Power spectra methods for a stochastic description of diffusion on deterministically growing domains.
نویسندگان
چکیده
A central challenge in developmental biology is understanding the creation of robust spatiotemporal heterogeneity. Generally, the mathematical treatments of biological systems have used continuum, mean-field hypotheses for their constituent parts, which ignores any sources of intrinsic stochastic effects. In this paper we consider a stochastic space-jump process as a description of diffusion, i.e., particles are able to undergo a random walk on a discretized domain. By developing analytical Fourier methods we are able to probe this probabilistic framework, which gives us insight into the patterning potential of diffusive systems. Further, an alternative description of domain growth is introduced, with which we are able to rigorously link the mean-field and stochastic descriptions. Finally, through combining these ideas, it is shown that such stochastic descriptions of diffusion on a deterministically growing domain are able to support the nucleation of states that are far removed from the deterministic mean-field steady state.
منابع مشابه
Stochastic Analysis of Seepage through Natural Alluvial Deposits Considering Mechanical Anisotropy
The soil is a heterogeneous and anisotropic medium. Hydraulic conductivity, an intrinsic property of natural alluvial deposits varies both deterministically and randomly in space and has different values in various directions. In the present study, the permeability of natural deposits and its influence on the seepage flow through a natural alluvial deposit is studied. The 2D Finite Difference c...
متن کاملSimulation of Spatial Systems with Demographic Noise
Demographic (shot) noise in population dynamics scales with the square root of the population size. This process is very important, as it yields an absorbing state at zero field, but simulating it, especially on spatial domains, is a non-trivial task. Here we compare the results of two operatorsplitting techniques suggested for simulating the corresponding Langevin equation, one by Pechenik and...
متن کاملA Two-Stage Chance-Constraint Stochastic Programming Model for Electricity Supply Chain Network Design
Development of every society is incumbent upon energy sector’s technological and economic effectiveness. The electricity industry is a growing and needs to have a better performance to effectively cover the demand. The industry requires a balance between cost and efficiency through careful design and planning. In this paper, a two-stage stochastic programming model is presented for the design o...
متن کاملStochastic Loewner evolution in multiply connected domains
We construct radial stochastic Loewner evolution in multiply connected domains, choosing the unit disk with concentric circular slits as a family of standard domains. The natural driving function or input is a diffusion on the associated moduli space. The diffusion stops when it reaches the boundary of the moduli space. We show that for this driving function the family of random growing compact...
متن کاملA Statistical Study of two Diffusion Processes on Torus and Their Applications
Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2011